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Abstract

The grazing bifurcation, stick phenomena and periodic motions in a periodically forced, nonlinear friction oscillator are

investigated. The nonlinear friction force is approximated by a piecewise linear, kinetic friction model with the static force.

The total forces for the input and output flows to the separation boundary are introduced, and the force criteria for the

onset and vanishing of stick motions are developed through such input and output flow forces. The periodic motions of

such an oscillator are predicted analytically through the corresponding mapping structure. Illustrations of the periodic

motions in such a piecewise friction model are given for a better understanding of the stick motion with the static friction.

The force responses are presented, which agreed very well with the force criteria. If the fully nonlinear friction force is

modeled by several portions of piecewise linear functions, the periodically forced, nonlinear friction oscillator can be

predicted more accurately. However, for the fully nonlinear friction force model, only the numerical investigation can be

carried out.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The force criteria of the stick and non-stick flows for the harmonically driven linear oscillator with dry-
friction were developed recently in Luo and Gegg [1,2]. For such an oscillator, the periodic motions were
predicted analytically through the appropriate mapping structures, and the stick and non-stick flows were
observed. Furthermore, Luo and Gegg [3,4] used the non-smooth theory of Luo [5] to systematically
investigate the mechanism of grazing and stick flows in such a friction oscillator. The sufficient and necessary
conditions were obtained for the existence of the grazing and stick flows to the separation boundary. In that
model, the kinetic friction is independent of the velocity except for the friction switching at the zero relative
velocity. However, the kinetic friction force in engineering is often a nonlinear function strongly dependent on
the relative velocity, and the maximum static friction force is also different from the kinetic friction at the zero
velocity. Such a difference causes the vector field of the dynamical system to have the flow barrier. The flow
barriers of the vector fields in discontinuous dynamical systems were systematically discussed in Luo [6]. The
flow barriers existing in the vector fields of dynamical systems will lead to more difficulty to investigate such
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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dynamical systems. Therefore, a periodically forced oscillator with a piecewise linear friction model is
investigated, and the jump from the maximum static friction to kinetic friction is also considered. The
objective of this investigation is to demonstrate how to develop the appropriate methodology and criteria for
discontinuous dynamical systems with flow barriers. To avoid computational errors, the nonlinear kinetic
friction force is modeled by a piecewise linear friction instead of the full nonlinear model in this paper. That is
because the oscillator with the full nonlinear friction model can only be solved numerically, in which case it is
very difficult to verify the analytical criteria. A mathematical discussion of the problem follows.

Consider a dynamical system with nonlinear friction, but the nonlinear friction is approximated by a
piecewise linear model, as shown in Fig. 1. The dynamical system consists of a mass (m), a spring of stiffness
(k) and a damper of viscous damping coefficient (r). The oscillator mass rests on the horizontal belt surface
traveling with a constant speed (V). The coordinate system (x, t) is absolute with displacement x and time t.
The periodic excitation force Q0 cosOt exerts on the mass, where Q0 and O are the excitation strength and
frequency, respectively. The piecewise linear friction force is given by

F̄ f _xð Þ

¼ m1 _x� V 1ð Þ � m2 V1 � Vð Þ þ F Nmk; _x 2 V1;1½ Þ;

¼ �m2 _x� Vð Þ þ F Nmk; _x 2 V ;V 1ð Þ;

2 �msFN ;msFN

� �
; _x ¼ V ;

¼ �m3 _x� Vð Þ � F Nmk; _x 2 V2;Vð Þ;

¼ m4 _x� V 2ð Þ � m3 V2 � Vð Þ � F Nmk; _x 2 �1;V 2ð �;

8>>>>>><
>>>>>>:

(1)

where _x9dx=dt. ms, mk and FN are static and kinetic friction coefficients and a normal force to the contact
surface, respectively. The coefficients mj (j ¼ 1, 2, 3, 4) are the slopes for friction force with velocity. For this
problem, FN ¼ mg and g is the gravitational acceleration. In fact, this model can be applied to many
mechanical problems, and the normal force can be exerted externally.

If the mass sticks on the belt surface, the total non-friction force per unit mass, acting on the mass in the
x-direction, is determined by

Fnf ¼ A0 cos Ot� 2 dV � cx for _x ¼ V , (2)

where A0 ¼ Q0=m, d ¼ r=2m and c ¼ k=m. For the stick motion, the non-friction force is less than the
maximum static friction force, i.e., Fnfj jpFf s

and F f s
¼ msFN=m. The mass does not have any relative motion

to the belt. Therefore, no acceleration exists because the belt speed is constant, i.e.,

€x ¼ 0 for _x ¼ V . (3)
V

r

k

m
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Q0 cosΩt
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�sFN

�kFN

−�sFN

−�kFN

Ff

V1V2
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−�kFN−�3 (V2−V)

Fig. 1. (a) Schematic mechanical model of the friction-induced oscillator and (b) piecewise linear friction force model.
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Once the stick motion exists already, if the non-friction force is greater than the maximum static friction
force on the mass (i.e., Fnfj j4Ff s

), the stick motion disappears. If any stick motion does not exist before, the
total force acting on the mass for the non-stick motion is

F ¼ A0 cos Ot� Ff k
� 2 d _x� cx for _xaV , (4)

where F f k
¼ F̄ f

�
m for _xaV . Therefore, the equation of non-stick motion for this dynamical system with a

piecewise linear friction is

€xþ 2 d _xþ cx ¼ A0 cos Ot� F f k
for _xaV . (5)

The above model is used to investigate the dynamics behavior of the periodically forced, nonlinear friction
oscillator. Such a problem is of great interest in engineering because friction-induced oscillations extensively
exist in engineering. For a long period, many researchers have paid a great attention on this problem.
However, this problem has not been solved yet owing to the discontinuity.

In 1931, Den Hartog [7] focused only on the non-stick periodic motion of the periodically forced linear
oscillator with Coulomb and viscous damping. In 1960, Levitan [8] discussed a friction oscillation model with the
base driven periodically, and the stability of the non-stick, periodic motion was discussed through the Poincare
mapping concept. Based on the Coulomb friction oscillator, in 1964, Filippov [9] developed a theory for
differential equations with discontinuous right-hand sides. The concept of differential inclusion was introduced
via the set-valued analysis, and the existence and uniqueness of the solution for such a discontinuous differential
equation were discussed. The comprehensive discussion of such discontinuous differential equations can be
referred to Ref. [10]. The Filippov’s theory mainly focused on the existence, uniqueness and stability of the
solutions for non-smooth dynamical systems. However, Luo [5] investigated the local singularity in the vicinity of
the separation boundary, and the certain criteria were developed to determine the local singularity and sliding
motions on the discontinuous boundary. Furthermore, the imaginary, sink and source flows were introduced in
Ref. [11] to determine the sink and source motions in non-smooth dynamical systems.

In 1979, Hundal [12] estimated the dynamical responses of the base driven friction oscillator. In 1986, Shaw [13]
investigated the stability and bifurcation of such a periodic motion through the Poincare mapping. In 1992, Feeny
[14] analytically and graphically investigated the non-smoothness of the Coulomb friction oscillator and the
regions for stick motion were presented. In 1994, Feeny and Moon [15] gave the experimental and numerical
investigations on chaos in a dry-friction oscillator. In 1996, Feeny [16] comprehensively discussed the nonlinear
dynamics of oscillators with stick–slip friction. In 1997, Hinrichs, Oestreich and Poop [17] considered the impact
and friction involved in the oscillator (also see [18]). The stick and non-stick motions in such an impact and
friction oscillator were observed, and chaotic motions were observed through a nonlinear friction model. In 1998,
Natsiavas [19] developed an algorithm to determine the periodic motions in piecewise linear oscillators with
viscous and dry friction damping, and the stability of such periodic motions was investigated through the
perturbation of the initial conditions. Leine et al. [20] presented the limit cycles of the nonlinear friction model
through the shooting method. In 1999, Virgin and Begley [21] investigated the grazing bifurcation and attraction
basin of an impact-friction oscillator through the interpolated cell mapping method. For a better understanding
of friction-induced vibration, one tried to develop the approximate solutions of responses in friction-induced
oscillation. In 2001, Ko et al. [22] investigated the fiction-induced vibrations with and without external excitations.
In 2002, Andreaus and Casini [23] considered a friction-impact model with Coulomb friction without external
excitation; and the closed-form solutions were presented. In 2003, Thomsen and Fidlin [24] presented the
approximate, analytical amplitude for the free stick–slip vibration with a nonlinear friction model. Kim and
Perkins [25] used the harmonic balance/Galerkin method to investigate non-smooth stick–slip oscillator. In 2004,
Pilipchuk and Tan [26] investigated the friction-induced vibration of a two-degree-of-freedom mass–damper–
spring system interacting with a decelerating rigid strip. Li and Feng [27] investigated the bifurcation and chaos in
the friction-induced oscillator with a nonlinear friction model.

To investigate non-smooth dynamical systems, the mapping techniques have been extensively used. For
instance, the mapping concepts have been adopted to determine the periodic motion in impacting systems
(e.g., [28–30]). This methodology was also employed to investigate the periodic and chaotic motions of the
periodically driven piecewise linear systems in Refs. [31,32]. A generalized methodology was given in Ref. [33]
for complicated periodic motions in such a piecewise linear system. To determine the unsteady process in
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machines, in 1994, Pfeiffer [34] considered both the impacts and frictions existing in the oscillator.
Furthermore, in 1996, Glocker and Pfeiffer [35] developed the theory for multibody dynamics with unilateral
contacts to solve such a complicated dynamics in machines. In 1999, Pfeiffer [36] gave a brief survey of the
theory of the unilateral multibody dynamics, and presented some typical applications for ones to refer
(also see [37]). In addition, the discontinuous map was developed at the discontinuous boundary to investigate
the complex dynamics of non-smooth dynamical systems (e.g., [38–40]), and the corresponding normal forms
were also developed at the discontinuous boundary.

In this paper, the piecewise linear, kinetic friction model with static friction will be used to approximate the
nonlinear friction forces in the periodically driven friction oscillator. The non-smooth dynamical theory in
Ref. [5] will be used to develop the conditions for the grazing bifurcation, and the onset and vanishing of stick
motions in such a friction oscillator. Because the jump between the static and kinetic friction exists, the input
and output flow forces will be introduced. The force criteria for the onset and vanishing of stick motions will
be developed through the input and output flow forces, and the condition for the grazing bifurcation to the
separation boundary will be presented. The mapping techniques will also be used to determine periodic
motions of the friction model in Eq. (5). The parameter map for periodic motions in such a friction-induced
vibration system will be obtained. Illustrations of the periodic motions in such a piecewise friction model will
be given to verify the analytical conditions.

2. Grazing and stick conditions

The discontinuities of this dynamical system are caused by the piecewise linear friction law. Further, the phase
plane must be partitioned into four domains. The jump between the static and kinetic friction forces is as a main
discontinuity. Therefore, the naming of the phase domains starts from the domain near the main discontinuous
boundary for _x4V . Based on the direction of trajectories of mass motion, the corresponding boundaries are
named, as shown in Fig. 2. The domain naming can be arbitrarily. The four regions are expressed by Oj

(j ¼ 1; 2; . . . ; 4). In phase plane, the flow and the corresponding vector field for such a system are introduced as

x9 x; _xð Þ
T
� x; yð Þ

T and F9 y;Fð Þ
T. (6)

The named domains and the oriented boundaries are expressed by

O1 ¼ x; yð Þ
��y 2 V ;V1ð Þ

� �
; O2 ¼ x; yð Þ

��y 2 V1;1ð Þ
� �

,

O3 ¼ x; yð Þ
��y 2 V2;Vð Þ

� �
; O4 ¼ x; yð Þ

��y 2 �1;V 2ð Þ
� �

, ð7Þ

qOij ¼ x; yð Þ
��jij x; yð Þ � y� Vr ¼ 0

n o
, (8)
Fig. 2. Phase plane partition and oriented boundaries.
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where r ¼ 1 if i; j 2 f1; 2g, r ¼+ if i; j 2 f1; 3g and r ¼ 2 if i; j 2 f3; 4g. The symbol + represents the empty
set. The subscript ( � )ij defines the boundary between Oi and Oj. The domains are accessible for a certain vector
field. On the boundary qO13 or qO31, the vector fields are discontinuous, but on the boundaries qO12 and qO34,
the vector fields are C0-continuous. Based on the definitions of the boundaries and domains in phase space, the
equations of motion in Eqs. (3) and (5) are described as

_x ¼ FðjÞ x; tð Þ; j 2 0; 1; 2; 3; 4f g, (9)

where

Fð0Þ x; tð Þ ¼ V ; 0ð Þ
T on qO13 or qO31;

FðjÞ x; tð Þ ¼ y;F j x; tð Þ
� 	T

in Oj ; j 2 1; 2; 3; 4f gð Þ;

Fj x; tð Þ ¼ A0 cos Ot� F
ðjÞ
f k

x; tð Þ � 2djy� cjx:

9>>=
>>; (10)

The corresponding dynamical friction forces are given by

F
ð2Þ
f k

x; tð Þ ¼
1

m
m1 _x� V1ð Þ � m2 V 1 � Vð Þ þ FNmk

� �
; _x 2 V1;1½ Þ,

F
ð1Þ
f k

x; tð Þ ¼ �
1

m
m2 _x� Vð Þ � FNmk

� �
; _x 2 V ;V 1ð Þ,

F
ð3Þ
f k

x; tð Þ ¼ �
1

m
m3 _x� Vð Þ þ FNmk

� �
; _x 2 V 2;Vð Þ,

F
ð4Þ
f k

x; tð Þ ¼
1

m
m4 _x� V2ð Þ � m3 V 2 � Vð Þ � FNmk

� �
; _x 2 �1;V2ð �. ð11Þ

The two force boundaries relative to V1,2 (i.e., _x ¼ V1 or V2) are C0-continuous. However, the boundary
relative to the velocity V is a discontinuous force boundary. From the non-smooth dynamical system theory in
Luo [5], only on the discontinuous force boundary, the stick motion for nqOab pointing to Oa is guaranteed by

nTqOab
� FðaÞ xm; tm�ð Þ

h i
o0 and nTqOab

� FðbÞ xm; tm�ð Þ

h i
40, (12)

where {a, b}A{1, 3} and a 6¼b with

nqOab ¼ rjab ¼
qjab

qx
;
qjab

qy


 �T

xm;ymð Þ
. (13)

Note that r ¼ q=qxiþ q=qyj is the Hamilton operator. The time tm represents the moment for the motion
just on the separation boundary, and the time tm� ¼ tm � 0 reflects the flows in the regions instead of the
separation boundary. However, the corresponding necessary and sufficient conditions for the non-stick
motion (or passable motion) are for nqOab pointing to Oa:

nTqOab
� FðaÞ xm; tm�ð Þ

h i
o0 and nTqOab

� FðbÞ xm; tmþð Þ

h i
o0 for Oa! Ob,

nTqOba
� FðbÞ xm; tm�ð Þ

h i
40 and nTqOba

� FðaÞ xm; tmþð Þ

h i
40 for Ob! Oa. ð14Þ

Using Eq. (8), Eq. (13) gives for i, jA{1, 2, 3, 4}:

nqOij
¼ nqOji

¼ 0; 1ð Þ
T. (15)

The normal directions of the boundaries (qO12 and qO21), (qO13 and qO31) and (qO34 and qO43) point to O2,
O1 and O3, respectively. Therefore, we have

nTqOji
� FðjÞ tð Þ ¼ nTqOij

� FðjÞ tð Þ ¼ Fj x; tð Þ. (16)
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With Eq. (16), the conditions for stick and non-stick motions in Eqs. (12) and (14) become

F1 xm; tm�ð Þo0 and F3 xm; tm�ð Þ40 on qO13,

F1 xm; tm�ð Þo0 and F3 xm; tmþð Þo0 for O1 ! O3,

F1 xm; tmþð Þ40 and F3 xm; tm�ð Þ40 for O3! O1. ð17Þ

When the non-stick motion on the boundary qO13 disappears, the sliding motion on the boundary will be
formed. The transition from the non-stick motion to the stick motion on the boundary is called the onset of
the stick motion. The detailed discussion of the onset of the stick motion can be referenced to Refs. [4,5].
Therefore, the onset condition for the stick motion is

F1 xm; tm�ð Þo0 and F3 xm; tmþð Þ ¼ 0 for O1! qO13,

F3 xm; tm�ð Þ40 and F1 xm; tmþð Þ ¼ 0 for O3 ! qO13. ð18Þ

Once the stick motion is formed on the boundary qO13, with varying time or system parameters, the stick
motion on the boundary qO13 will disappear, which is termed the vanishing of the stick motion on the boundary.
The theory for non-smooth dynamical systems in Luo [5] gives the force conditions for vanishing of the stick
motions, i.e.,

F1 xm; tm�ð Þo0 and F3 xm; tm�ð Þ ¼ 0 for qO13! O3,

F3 xm; tm�ð Þ40 and F1 xm; tm�ð Þ ¼ 0 for qO13! O1. ð19Þ

Based on the above conditions, the stick motion on the boundary qO13 is sketched in Fig. 3. The conditions for
the stick motion are depicted through the two vector fields F(1)(t) and F(3)(t) in the domains O1 and O3. Because
the stick motion is only possible on the boundary qO13, in the vicinity of such a boundary, the vector fields in two
domains are depicted in Fig. 3. In Fig. 3(a), once the trajectory arrives to the boundary, if the normal vector fields
on both sides of the separation boundary satisfy the condition in Eq. (12), the flow (or stick motion) will slide on
the boundary. With varying time, the condition in Eq. (12) may not be satisfied by the normal vector fields. The
sliding flow will disappear. The disappearance condition in Eq. (19) requires that one of the two normal
components of the vector fields be zero (i.e., F1(tm�) ¼ 0 or F3(tm�) ¼ 0). In Fig. 3(a), the vanishing of the stick
(or sliding) motion with F3(tm�) ¼ 0 is sketched. When the flow from O1 arrives to the discontinuous boundary
qO13, if the first equation of Eq. (17) holds, then the sliding motion will be formed, which is also sketched in
Fig. 3(a). Under the conditions in Eq. (18), the flow may slide along the separation boundary, or the flow may
pass through the separation boundary. This critical situation is called the sliding or stick motion bifurcation. The
detailed discussion was given (e.g., [4,5,11]). For this situation, with varying time or parameters, the stick motion
is formed on the boundary. The condition in Eq. (12) should be satisfied to keep the sliding motion. Once the first
equation of Eq. (19) is satisfied, the sliding motion will disappear and get into one of the two domains O1 and O3.
Such a sliding motion is sketched in Fig. 3(b).
V

Ω1

(xi,V,ti)

x

y

Ω3

F(1)

F(3)

(xi,V,ti)

V

Ω1

x

y

Ω3

F(1)

F(3)

Fig. 3. Vector field for stick motion: (a) vanishing only and (b) onset and vanishing.
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From the foregoing discussion, the switching conditions in Eqs. (18) and (19) give four possible sliding
motions (I)–(IV), as shown in Fig. 4. The switching conditions given in Eq. (18) are critical for formation of
the sliding motion. From Eq. (18), the onset condition has four possible cases, sketched in Fig. 5. The sliding
motion starting (xi, ti) and vanishing at (xi+1, ti+1) possess the four cases: F 3ðtiÞ ¼ F 3ðtiþ1Þ ¼ 0 (case I),
F3ðtiÞ ¼ F1ðtiþ1Þ ¼ 0 (case II), F1ðtiÞ ¼ F 3ðtiþ1Þ ¼ 0 (case III) and F1ðtiÞ ¼ F 1ðtiþ1Þ ¼ 0 (case IV). The onset
conditions of the sliding motion for cases I and IV are the same as for the grazing motion, as discussed latter.
The two onsets of the sliding motions can be called the grazing onsets. The other onset conditions based on the
cases II and III are the inflexed onsets for the sliding motions. The detailed mathematical description can be
referred to Luo [5].

The grazing conditions are sketched in Fig. 6 for a constant, switching velocity V. The vector fields F(i)(x, t)
and F(j)(x, t) in Oi and Oj are expressed by the dashed and solid arrow-lines, respectively. In addition
to F aðxm; tm�Þ ¼ 0 (aA{i, j}), the sufficient condition for grazing motions on the boundary requires
Fiðxm;Otm��Þo0 and Fiðxm;Otmþ�Þ40 in domain Oi; and Fjðxm;Otm��Þo0 and F jðxm;Otmþ�Þ40 in domain Oj.
V

(ti, xi, V) (ti+1, xi+1, V)

x

y

I

II

III

IV

Fig. 4. Classification of sliding motions for belt speed V40.
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II 

III 

IV

(ti, xi, V) = (ti+1, xi+1, V)

I

II

III

IV

(ti, xi, V) (ti+1, xi+1, V)

Fig. 5. The four onsets of the sliding motion and the corresponding sliding motion in phase plane for belt speed V40.
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Fig. 6. Vector fields of grazing motions near the boundary qOij in (a) Oi and (b) Oj with i; j 2 f1; 2; 3; 4g.
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From Luo [5], the grazing motion in Fig. 6 is guaranteed by the following conditions:

nTqOab
� FðaÞ xm; tm�ð Þ

h i
¼ 0; a;b 2 i; j

� �
and aab,

nTqOij
�DFðiÞ xm; tm�ð Þ

h i
40; nTqOij

�DFðjÞ xm; tm�ð Þ

h i
o0 for qOij 2 qO21; qO13; and qO34f g. ð20Þ

where

DFðiÞ x; tð Þ ¼ F i x; tð Þ;rF i x; tð Þ � F
ið Þ x; tð Þ þ

qF i x; tð Þ

qt


 �T

. (21)

The detailed discussion of the above grazing conditions can be found in Ref. [3]. With Eqs. (15), we have

nTqOij
� FðiÞ x; tð Þ ¼ F i x;Otð Þ;

nTqOij
�DFðiÞ x; tð Þ ¼ rFi x;Otð Þ � FðiÞ x; tð Þ þ qFi x;Otð Þ

qt
:

(22)

From Eqs. (20) and (22), the force conditions for grazing motions in Fig. 6 are

Fa xm;Otmð Þ ¼ 0; a 2 i; j
� �

,

rFi xm;Otm�ð Þ � FðiÞ xm; tm�ð Þ þ
qFi xm;Otm�ð Þ

qt
40,

rFj xm;Otm�ð Þ � FðjÞ xm; tm�ð Þ þ
qF j xm;Otm�ð Þ

qt
o0,

for qOij 2 qO21; qO13; and qO34f g. ð23Þ

The kinetic friction forces on the boundaries qO34 and qO12 are C0-continuous without the other
discontinuity. It indicates the vector field in Eq. (9) is C0-continuous. Therefore, no stick motion exists in such
boundaries. Further, only the kinetic friction force was used to compute the total force. However, on qO13,
there are the static friction forces, and once the relative motion appears, the static friction force will jump to
the kinetic forces. For the non-stick motion on qO13, the maximum static friction force cannot be inserted, and
only the kinetic friction force governs such a non-stick motion. Once the stick motion is formed on the
boundary qO13, the maximum static friction instead of the kinetic friction one on qO13 governs the stick
motion. For the disappearance of stick motion, the non-friction forces of the oscillator must overcome the
maximum static force. Otherwise, the friction oscillator will continue to keep the stick motion on qO13. Thus,
based on the maximum static friction force, the total forces for stick motions qO13 should be computed. For
the stick motion on the boundary qO13, we have xm ¼ V � ðtm � tiÞ þ xi from Eq. (3) for tm 2 ðti; tf Þ. ti and tf

are the starting and final times for the sliding motion on the boundary qO13. Therefore, the total forces of the
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input and output flows to the boundary qO13, at ðxm; tmÞ 2 qO13, are defined as

F
ðinÞ
j xm; tm�ð Þ ¼ �2djV � cj V tm � tið Þ þ xi½ � þ A0 cos Otm � a

ðkÞ
j , (24)

F
ðoÞ
j xm; tm�ð Þ ¼ �2djV � cj V tm � tið Þ þ xi½ � þ A0 cos Otm � a

ðsÞ
j , (25)

where a
ðkÞ
1 ¼ �a

ðkÞ
3 ¼ mkFN=m and a

ðsÞ
1 ¼ �a

ðsÞ
3 ¼ F f s

� Ff s
is the maximum static friction force. With the above

two definitions, from Luo [6], the force criteria on the boundary qO13 in Eq. (17) becomes

F
ðinÞ
1 xi; ti�ð Þ � F

ðinÞ
3 xi; ti�ð Þ ¼ 0 on qO13 just for onset,

F
ðoÞ
1 xm; tm�ð Þo0 and F

ðoÞ
3 xm; tm�ð Þ40 on qO13 before vanishing ð26aÞ

for the stick motion and

F
ðinÞ
1 xm; tm�ð Þo0 and F

ðinÞ
3 xm; tmþð Þo0 for O1 ! O3,

F
ðinÞ
1 xm; tmþð Þ40 and F

ðinÞ
3 xm; tm�ð Þ40 for O3! O1 ð26bÞ

for the non-stick motion.
From Eq. (18), the onset conditions for the stick motion on the boundary qO13 are given by

F
ðinÞ
1 xm; tm�ð Þo0 and F

ðinÞ
3 xm; tmþð Þ ¼ 0 for O1! qO13,

F
ðinÞ
3 xm; tm�ð Þ40 and F

ðinÞ
1 xm; tmþð Þ ¼ 0 for O3! qO13. ð27Þ

The force conditions in Eq. (19) for vanishing of the stick motion on the boundary qO13 become

F
ðoÞ
1 xm; tm�ð Þo0 and F

ðoÞ
3 xm; tm�ð Þ ¼ 0 for qO13! O3,

F
ðoÞ
3 xm; tm�ð Þ40 and F

ðoÞ
1 xm; tm�ð Þ ¼ 0 for qO13! O1. ð28Þ

With Eq. (24), the force conditions in Eq. (23) for grazing on qO13 become

F ðinÞa xm;Otmð Þ ¼ 0; a 2 1; 3f g,

rF
ðinÞ
1 xm;Otm�ð ÞdFð1Þ xm; tm�ð Þ þ

qF
ðinÞ
1 xm;Otm�ð Þ

qt
40,

rF
ðinÞ
3 xm;Otm�ð ÞdFð3Þ xm; tm�ð Þ þ

qF
ðinÞ
3 xm;Otm�ð Þ

qt
o0. ð29Þ

The force conditions for grazing at the boundaries qO12 and qO34 are unchanged as in Eq. (23). From the
foregoing force conditions, all the possible periodic motions for the friction oscillator in Eq. (5) can be
determined.

3. Generic mappings

To determine periodic motions in such an oscillator, with an initial condition (ti, xi, V), the direct
integration of Eq. (3) yields

x ¼ V t� tið Þ þ xi. (30)

Substitution of Eq. (24) into Eq. (11) produces the forces for a very small-neighborhood of the stick motion
(d-0) in the domain Oj (jA{1, 3}), i.e.,

F j tm�ð Þ ¼ �2djV � cj V tm � tið Þ þ xi½ � þ A0 cos Otm � a
ðsÞ
j (31)

for this problem. For non-stick motions, the initial condition on the discontinuous boundary is selected, and
the coefficients of the solutions is listed in Appendices A and B, C

ðjÞ
k ðxi; _xi; tiÞ9C

ðjÞ
k ðxi; tiÞ for k ¼ 1, 2. The basic

solutions in Appendix A will be used for development of mappings.
In order to develop generic mappings, the discontinuous boundaries should be numbered. The boundary

with the friction force jump is named by S1, and the other separation boundaries are S2 and S3. The three
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boundaries are

Sa ¼ S0
a [ S

þ
a [ S

�
a for a ¼ 1; 2; 3. (32)

The corresponding, switching planes are defined as

S0
a ¼ xi;Otið Þ

�� _xi tið Þ ¼ Vr
� �

; S�a ¼ xi;Otið Þ
�� _xi tið Þ ¼ V�r

n o
, (33)

where V�s ¼ lim�!0ðVs � �Þ for an arbitrarily small e40 and r ¼ {+, 1, 2} for a ¼ 1, 2, 3. In phase plane, the
trajectories in Oj starting and ending at the separation boundaries are sketched in Fig. 7. The starting and
ending points for mappings Pjba in Oj are ðxi; _xi; tiÞ on Sa and ðxiþ1; _xiþ1; tiþ1Þ on Sb, respectively. Notice that
the indices j ¼ 1, 2, 3, 4 and a, b ¼ 1, 2, 3 are for domains and boundaries, respectively. The stick mapping is
P011 . Therefore, the mappings can be expressed through the switching sets as

P111 : S
þ
1 �!

O1 Sþ1 ;P311 : S
�
1 �!

O3 S�1 ;

P222 : S
þ
2 �!

O2 Sþ2 ;P122 : S
�
2 �!

O1 S�2 ;

P433 : S
�
3 �!

O4 S�3 ;P333 : S
þ
3 �!

O3
Sþ3 ;

9>>>>=
>>>>;

(34)

for the local mappings,

P121 : S
þ
1 �!

O1 S�2 ; P112 : S
�
2 �!

O1 Sþ1 ;

P331 : S
�
1 �!

O3
Sþ3 ; P313 : S

þ
3 �!

O3
S�1 ;

9>=
>; (35)

for the global mappings, and

P011 : S
0
1�!
qO13

S0
1; (36)

for the stick mapping.
The governing equations for P011 and jA{1, 3} are

� xiþ1 þ V tiþ1 � tið Þ þ xi ¼ 0,

� 2djV � cj V tiþ1 � tið Þ þ xi½ � þ A0 cos Ot� a
ðsÞ
j ¼ 0. ð37Þ

From assumptions in Luo [5], the discontinuous dynamical system in Eq. (9) has three possible solutions in
each domain Oi to make the global motion stable. Those solutions are listed in Appendix A. For non-stick
motion, the governing equations of mapping Pjba with j ¼ 1, 2, 3, 4 and a, b ¼ 1, 2, 3) are from the
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displacement and velocity relations, i.e.,

f
jbað Þ
1 xi;Oti; xiþ1;Otiþ1ð Þ ¼ 0,

f
jbað Þ
2 xi;Oti; xiþ1;Otiþ1ð Þ ¼ 0. ð38Þ
4. Periodic motions

Once the generic mappings are developed, periodic motions in this discontinuous system can be investigated
through the appropriate mapping structures. To demonstrate the procedure of determining periodic motions
in this friction oscillator, consider a simple mapping first, i.e.,

P ¼ P311 � P111 : S
þ
1 ! S�1 . (39)

From the above relation, we have

P111 : xi;V
þ;Oti

� 	
! xiþ1;V

þ;Otiþ1

� 	
;

P311 : xiþ1;V
�;Otiþ1ð Þ ! xiþ2;V

�;Otiþ2ð Þ:

)
(40)

Without the stick motion, Vþ ¼ V� ¼ V exists. The periodic motion yiþ2 ¼ Pyi where yi ¼ ðxi;OtiÞ
T during

N-periods of excitation gives

xiþ2 ¼ xi;Otiþ2 ¼ Oti þ 2Np. (41)

With Eq. (38), Eqs. (40) and (41) gives yi ¼ ðxi;OtiÞ
T.

For a better understanding of periodic motions with a complicated mapping structure, consider the
following mapping structure as an example:

P ¼ P1122221210113134333319P112 � P222 � P121 � P011 � P313 � P433 � P331 . (42)

Based on the foregoing mapping structure, the periodic motion relative to yiþ7 ¼ Pyi is sketched in Fig. 8.
With the corresponding periodicity (i.e., xi+7 ¼ xi and Otiþ7 ¼ Oti þ 2Np) similar to Eq. (41), the switching
values of the periodic motion can be obtained.

Further, consider a generalized mapping structure:

Psm:::s2s1 : ðxi; yi;Oti; Þ ! ðxiþm; yiþm;OtiþmÞ, (43)

where Psm:::s2s19Psm � � � � � Ps2 � Ps1 and Psi
(i ¼ 1,2,y,m) is chosen from a generic mapping set fPjba ; j ¼

1; 2; 3; 4 and a; b ¼ 1; 2; 3g. From the basic mappings defined in Eqs. (34)–(36), the corresponding mapping
x

y

V

P112

P222

P121

P313

P433

P331

V1

V2

P011

Fig. 8. Periodic motion with stick.
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relations with the mapping structure Psm:::s2s1 have 2m equations as

Ps1 : ðxi; yi;OtiÞ ! ðxiþ1; yiþ1;Otiþ1Þ;

Ps2 : ðxiþ1; yiþ1;Otiþ1Þ ! ðxiþ2; yiþ2;Otiþ2Þ;

..

.

Psm : ðxiþm�1; yiþm�1;Otiþm�1Þ ! ðxiþm; yiþm;OtiþmÞ:

9>>>>>=
>>>>>;

(44)

The periodicity of periodic motion for the mapping structure Psm:::s2s1 gives

xiþm ¼ xi; Otiþm ¼ Oti þ 2Np. (45)

Because the switching velocities yi+j (j ¼ 0; 1; 2; . . . ;m) are given, the mapping structure with the periodicity
provides the (2m+2) equations required to solve the (2m+2) unknowns xi+j and Oti+j (j ¼ 0; 1; 2; . . . ;m).
Without the stick motion, the eigenvalue analysis can provide an adequate prediction of the stability for
periodic motion. The formulas for the eigenvalue analysis are presented in Appendix B. However, the
eigenvalue analysis cannot work well once the stick motion is involved. Therefore, the onset, existence and
disappearance of the stick motion should be determined through the force criteria in Eqs. (26)–(28). The
grazing bifurcation will be determined by Eqs. (23) and (29).

Consider the system parameters: m ¼ 5, d1 ¼ d2 ¼ 0.1, c1 ¼ c2 ¼ 30, V ¼ 3, V1 ¼ 4.5, V2 ¼ 1.5, ms ¼ 0.5,
mk ¼ 0.4, m1 ¼ m3 ¼ 0.1 m2 ¼ m4 ¼ 0.5 and g ¼ 9.8 for illustrations. The switching phase and displacement
varying with excitation frequency are computed for Q0 ¼ 70. The acronyms ‘‘NM’’ and ‘‘GB’’ denote the ‘‘No
motion intersected with the discontinuous boundary’’ and ‘‘grazing bifurcation’’, respectively. In Fig. 9, the
periodic motion with stick relative to P331011313433 is in O 2 0:385; 3:76½ �, but the non-stick periodic motion of
P333433 lies in O 2 3:76; 8:31½ �. The particular values OE0.385, 3.76 and 8.31 are for grazing bifurcations. The
corresponding eigenvalue analysis is completed, and the magnitudes and real parts of eigenvalues are
presented in Fig. 10. The switching between two periodic motions possesses the discontinuous eigenvalues, and
one of the two eigenvalues is zero for the motion with stick. It is observed that the periodic motion intersected
with the discontinuous boundary disappears when two eigenvalues equal zero. For OE8.31, from two
eigenvalues, the periodic motion is table. However, the grazing bifurcation occurs, no more periodic motion
can be intersected with the separation boundary.
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From mapping structures, once the grazing and sliding bifurcation conditions are inserted, a parameter map
between excitation frequency and amplitude is obtained and illustrated in Figs. 11(a) and (b). In Fig. 11(a), the
full view of the parameter map is presented for the parameter ranges of OA(0, 8) and Q0A(0, 180). However, in
Fig. 11(b), the zoomed view of the parameter map is given for a better view of the complicated periodic
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motions switching. The parameter domains relative to the corresponding mapping structures are labeled.
The boundaries between the two domains are given by the sliding and grazing bifurcations. Below the
domain of the periodic motion of P333433 , no any motion trajectory is intersected with the discontinuous
boundary. Each domain is shaded or filled. The boundary between motions relative to P333433 and P331011313433

is given by the sliding bifurcation condition (or the onset of the stick motion). The boundary between
periodic motions of P331011313433 and P331011111313433 is the onset of the passable motion on the boundary qO13.
However, the sliding fragmentation of P331011313433 occurs on the boundary between motions pertaining to
P331011313433 and P331011111011313433 . With varying parameters, the sliding motion from one piece becomes
many pieces of the sliding and passable motions. This phenomenon is called the sliding fragmentation. The
discussion of the sliding fragmentation can be referred to [4,6]. Between the periodic motions of P331011111313433

and P331011111011313433 , a sliding bifurcation exists. The sliding motion disappearance of P331011111313433 leads
to a periodic motion pertaining to P331111313433 , and the corresponding boundary is determined by the
sliding vanishing condition. From the motion of P331111313433 to P331112222121313433 , the grazing bifurcation
exists on the boundary qO12. In addition, from the periodic motion of P331011111011313433 to P331011112222121011313433 ,
the grazing bifurcation occurs on the boundary qO12 again. From the periodic motion of
P331011112222121011313433 to P331112222121011313433 , the boundary for vanishing the sliding motion exists. Further,
the disappearance of the sliding motion for P331112222121011313433 produces the periodic motion relative to
P331112222121313433 .
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conditions ðOti ;xi; _xiÞ 	 ð0:0458; 3:0183; 1:50Þ. m ¼ 5, d1 ¼ d2 ¼ 0.1, c1 ¼ c2 ¼ 30, V ¼ 3, V1 ¼ 4.5, V2 ¼ 1.5, ms ¼ 0.5, mk ¼ 0.4,

m1 ¼ m3 ¼ 0.1 m2 ¼ m4 ¼ 0.5 and g ¼ 9.8.
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5. Numerical simulations

To illustrate the analytical criteria, numerical simulations for this friction oscillator are carried out. For
numerical simulations, the same parameters m ¼ 5, d1 ¼ d2 ¼ 0.1, c1 ¼ c2 ¼ 30, V ¼ 3, V1 ¼ 4.5, V2 ¼ 1.5,
ms ¼ 0.5, mk ¼ 0.4, m1 ¼ m3 ¼ 0.1 m2 ¼ m4 ¼ 0.5 and g ¼ 9.8 are used. Consider the non-stick periodic motion
relative to P333 � P433 for illustration. This periodic motion does not have the intersection with the boundary
qO13. The periodic motion switches at the boundary qO34. Because the friction force on the boundary qO34 is
C0-continuous with the piecewise linearity in Eq. (1), the total force on the boundary qO34 is continuous, but
the derivative of the force is discontinuous. The phase plane, force distributions along both displacement and
velocity, and the responses for displacement, velocity and acceleration of the periodic motion of P433333 are
plotted in Figs. 12(a)–(f) for O ¼ 5 and Q0 ¼ 70 with ðOti;xi; _xiÞ 	 ð0:0458; 3:0183; 1:50Þ; respectively. The
responses in domains O3 and O4 are represented by the thin and dark curves, accordingly. The circular
symbols are switching points, and the gray filled symbol is the starting point of the periodic motion. The
arrow is the direction of the periodic motion. The phase plane is clearly presented in Fig. 12(a). In Figs. 12(b)
and (c), it is observed that the force is not smooth at the boundary qO34, and the corresponding acceleration in
Fig. 12(f) is not smooth as well. The displacement and velocity responses in Figs. 12(d), (e) are very smooth. In
addition, the corresponding mappings are labeled on all the plots. Once the starting point is changed to
another switching point, the mapping structure of the periodic motion becomes P333433 . Therefore, the two
mapping structures give the same periodic motion except for the different initial conditions.
0.0 4.0 6.0 8.0

V
el

oc
ity

, y

-4.0

-2.0

0.0

2.0

4.0

Ω3

Ω4

P313

P011

P433

P331

P313

Ω1

V2

V

0.0 2.0 4.0 8.0

Fo
rc

e,
 F

-60

-40

-20

0

20

40

(o)
F3-

(o)
F1-

(o)
F1-

(o)
F3-

-4.0 -2.0 0.0 2.0 4.0

Fo
rc

e,
 F

-60

-30

0

30

60

4.0 8.0

D
is

pl
ac

em
en

t, 
x 

0.0 4.0 8.0 12.0

V
el

oc
ity

, y

-4.0

-2.0

0.0

2.0

4.0

4.0 8.0 12.0

A
cc

el
er

at
io

n,
 d

2 x/
dt

2 

-8.0

-4.0

0.0

4.0

8.08.0

6.0

4.0

2.0

0.0

0.0

Time, t

12.0

Displacement, x

2.0

Time, t Time, t

0.0

Displacement, x Velocity, y

6.0

P011

P433

P011
P331

P433

P313

P011

P331

P313

P011

P331
P433

P433 P331

P011

P313

P433

P011
P011

P331
P313

P333
P313

P433

P313

P011P433

P313

P011
P433

P333
P331

P011

Fig. 13. Periodic responses of mapping P331 � P011 � P313 � P433 : (a) phase plane, (b) force distribution along the displacement, (c) force

distribution along the velocity, (d) displacement response, (e) velocity response and (f) acceleration response for O ¼ 1 and Q0 ¼ 70 with

the initial conditions ðOti;xi; _xiÞ 	 ð0:6672; 6:5814; 1:50Þ. m ¼ 5, d1 ¼ d2 ¼ 0.1, c1 ¼ c2 ¼ 30, V ¼ 3, V1 ¼ 4.5, V2 ¼ 1.5, ms ¼ 0.5, mk ¼ 0.4,
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Consider the second example of the stick periodic motion relative to mapping P331011313433 . The excitation

frequency and amplitude O ¼ 1 and Q0 ¼ 70 with the initial condition ðOti;xi; _xiÞ 	 ð0:6672; 6:5814; 1:50Þ are
used, and the other parameters are the same as in the first example. Again, the phase plane, force
distributions along both displacement and velocity, and the responses for displacement, velocity and
acceleration of the periodic motion of P331011313433 are shown in Figs. 13(a)–(f), respectively. For this

periodic motion, the sliding motion along the boundary qO13 exists. Because the friction force discontinuity on
qO13 exists in Eq. (1), the discontinuity of the total force can be observed on both sides of the boundary qO13.
In addition, the static and kinetic friction forces are different. Thus if the sticking flow wants to
leave the separation boundary, the total non-friction force must overcome the static friction force. Therefore,

the total force for the output flow to the boundary is defined in Eq. (25). F ðoÞa�9F ðoÞa ðxm; tm�Þ is illustrated in

order to observe the force criteria for the disappearance of the stick motion. For convenience, such a total
force for the output flow to the boundary is called the output flow force. The stick motion is a straight line
along the discontinuous boundary in phase plane, as shown in Fig. 13(a). The force non-smoothness on the
boundary qO34 between the two domains O3 and O4 is clearly observed in Fig. 13(b). If the total non-friction
force is equal to or less than the kinetic friction force, the flow arriving to the boundary qO13 will become
the stick motion. The total force for the input flow to the boundary is defined in Eq. (24), as not presented in
Fig. 13(c). For convenience, the total force for the input flow to the boundary qO13 is called the input

flow force. In Fig. 13(b), the stick motion disappears at F
ðoÞ
3� ¼ 0, it implies the non-friction force overcomes

the maximum static friction force. Furthermore, the oscillator starts to oscillate on the moving belt, and
the kinetic friction force should be used to estimate the total force, as in the third equation of Eq. (10) for
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Fig. 14. Phase planes, force distributions along displacement and velocity for V ¼ 3 and xi ¼ 1.5: (a)–(c) P331011111313433 (O ¼ 3 and

Q0 ¼ 80, ðOti;xiÞ 	 ð1:6590; 4:6207Þ), (d)–(f) P331111313433 (O ¼ 4 and Q0 ¼ 100, ðOti; xiÞ 	 ð1:8608; 4:4515Þ). m ¼ 5, d1 ¼ d2 ¼ 0.1,

c1 ¼ c2 ¼ 30, V ¼ 3, V1 ¼ 4.5, V2 ¼ 1.5, ms ¼ 0.5, mk ¼ 0.4, m1 ¼ m3 ¼ 0.1 m2 ¼ m4 ¼ 0.5 and g ¼ 9.8.



ARTICLE IN PRESS

0.0 4.0 6.0 8.0

V
el

oc
ity

, y
 

-5.0

P313

P011
P111 P011

P331

P433

V

V2

Ω4

Ω3

Ω1

2.0 6.0
Fo

rc
e,

 F
-60

-30

0

30

60

(o)
F1

(o)
F1

(o)
F3

(o)
F3

(o)
F3

(o)
F3

(o)
F1

(o)
F1

(o)
F1

(o)
F3

(o)
F1

(o)
F3

(o)
F1

(o)
F3

(o)
F3

(o)
F1

(o)
F3

Displacement, x

-4.0 -2.0 0.0 4.0

Fo
rc

e,
 F

 

-60

-30

0

30

60

-4.0 0.0 4.0 8.0 12.0

V
el

oc
ity

, y

-6.0

-3.0

0.0

3.0

6.0

P331
V

V2

Ω4

Ω3

Ω1

Ω2

V1

-4.0 0.0 4.0 8.0 12.0

Fo
rc

e,
 F

-60

-30

0

30

60

-6.0 -3.0 0.0 3.0 6.0

Fo
rc

e,
 F

-60

-30

0

30

60

5.0

2.5

0.0

-2.5

Velocity, y

2.0

Displacement, x

4.0 8.00.02.0

Displacement, x Displacement, x Velocity, y

P011
P311

P111

P011

P011P313

P331
P433

P111

P011

P011

P011

P222
P112

P011

P011

P121

P011

P433

P011

P433

P111 P112

P222

P121
P011

P313

P111

P222 P011

P331

P433P121

P011

P313

P011

P331

P313

P433P011

P011

P331

Fig. 15. Phase planes, force distributions along displacement and velocity for V ¼ 3 and xi ¼ 1.5: (a)–(c) P331011111011313433 (O ¼ 1.2 and
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d1 ¼ d2 ¼ 0.1, c1 ¼ c2 ¼ 30, V ¼ 3, V1 ¼ 4.5, V2 ¼ 1.5, ms ¼ 0.5, mk ¼ 0.4, m1 ¼ m3 ¼ 0.1 m2 ¼ m4 ¼ 0.5 and g ¼ 9.8.
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motion in domain O3. So the output flow force from zero jumps to the negative regular total force

i.e., F3ðx; tÞo0, as observed in Fig. 13(b). Since the input flow force F
ðoÞ
3�4F

ðinÞ
3�40 and the output flow force

F
ðoÞ
1�o0, the stick motion appears. The non-smoothness of the forces on the boundary qO34 is also observed.

The force characteristics of stick motion and domain switching are also presented in Fig. 13(c). From
Figs. 13(d) and (e), the displacement and velocity responses are continuous. However, the acceleration is zero
for the stick motion on qO13 and is non-smooth at qO34 because of the force discontinuity, which is observed in
Fig. 13(f).

The phase planes and force distribution along the displacement and velocity are presented in
Fig. 14(a)–(c) P331011111313433 (O ¼ 3, Q0 ¼ 80,ðOti; xiÞ 	 ð1:6590; 4:6207Þ) and (d)–(f) P331111313433 (O ¼ 4 and
Q0 ¼ 100, ðOti;xiÞ 	 ð1:8608; 4:4515Þ) for V ¼ 3 and xi ¼ 1.5. When the stick motion in P331011111313433

disappears, the non-stick periodic motion will exist. The periodic motion for P331112222121011313433 (O ¼ 1.2
and Q0 ¼ 89, ðOti;xiÞ 	 ð0:8574; 7:2345Þ) and the most complicated motion P331011112222121011313433 (O ¼ 0.8
and Q0 ¼ 120, ðOti;xiÞ 	 ð0:5130; 9:7127Þ) are presented in Figs. 15(a)–(c) and (d)–(f), respectively.
The complicated force distributions are given, which help one understand the necessary and sufficient
conditions given in Section 2. The phase trajectories and force distributions for P331112222121313433

(O ¼ 2, Q0 ¼ 120, ðOti;xiÞ 	 ð1:4164; 6:9920Þ) and P331011111011313433 (O ¼ 1.2 and Q0 ¼ 80, ðOti;xiÞ 	

ð0:9534; 6:4731Þ) are also shown in Figs. 16(a)–(c) and (d)–(f), respectively. From the previous illustrations,
the force criteria are very important to determine the dynamic characteristics of non-smooth dynamical
systems.
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6. Conclusions

A periodically forced, nonlinear friction oscillator is investigated in this paper, and the nonlinear friction
force is approximated by a piecewise linear, kinetic friction model with the static force. To determine the
dynamics of such an oscillator, the input and output flow forces are introduced in the vicinity of the
discontinuous friction force boundary. The force criteria for the onset and vanishing of stick motions are
developed through the input and output flow forces. The periodic motions of such an oscillator are
analytically predicted through the corresponding mapping structures. The force responses of periodic motions
agreed very well with the force criteria. If the nonlinear friction force is modeled by the several portions of
piecewise linear functions, the periodically forced, nonlinear friction oscillator can be more accurately
predicted. However, from the force criteria developed in this paper, the numerical prediction of the fully
nonlinear friction oscillator can be carried out.
Appendix A. Basic solutions

Consider a linear oscillator in the domain Oj:

€x jð Þ þ 2dj _x
jð Þ þ cjx

jð Þ ¼ �bj þ A cos Ot. (A.1)
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With the initial condition ðxi; _xi; tiÞ, solution for Eq. (A.1) in two regions Oj (jA{1, 2}) are for Case I,
(i.e., d2

j 4cj):

xðjÞðtÞ ¼ C
ðjÞ
1 xi; _xi; tið Þ el

ðjÞ
1

t�tið Þ
þ C

ðjÞ
2 xi; _xi; tið Þ el

ðjÞ
2

t�tið Þ
þ AðjÞ cos Otþ BðjÞ sin Otþ CðjÞ, (A.2)

_xðjÞðtÞ ¼ lðjÞ1 C
ðjÞ
1 xi; _xi; tið Þ el

ðjÞ
1

t�tið Þ
þ lðjÞ2 C

ðjÞ
2 xi; _xi; tið Þ el

ðjÞ
2

t�tið Þ
� AðjÞO sin Otþ BðjÞO cos Ot, (A.3)

lðjÞ1;2 ¼ � dj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

j � cj

q
; oðjÞd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

j � cj

q
,

C
ðjÞ
1 xi; _xi; tið Þ ¼

1

2oðjÞd

� BðjÞOþ dj þ oðjÞd


 �
AðjÞ

h i
cos Oti

n
þ AðjÞO� dj þ oðjÞd


 �
BðjÞ

h i
sin Oti þ _xi

� dj þ oðjÞd


 �
CðjÞ � xi

� 	o
,

C
ðjÞ
2 xi; _xi; tið Þ ¼

1

2o jð Þ
d

BðjÞO� oðjÞd � dj


 �
AðjÞ

h i
cos Oti

n
� oðjÞd � dj


 �
BðjÞ þ AðjÞO

h i
sin Oti

� _xi þ oðjÞd � dj


 �
xi � CðjÞ
� 	o

, ðA:4Þ

AðjÞ ¼
A0 cj � O2
� 	

cj � O2
� 	2

þ 2djO
� 	2 ; BðjÞ ¼

2djOA0

cj � O2
� 	2

þ 2djO
� 	2 ; CðjÞ ¼ �

bj

cj

. (A.5)

For Case II (i.e., d2
j ocj):

xðjÞðtÞ ¼ e�dj t�tið Þ C
jð Þ
1 xi; _xi; tið Þ cos oðjÞd t� tið Þ

h
þ C

ðjÞ
1 xi; _xi; tið Þ sin od t� tið Þ

i
þ AðjÞ cos Otþ BðjÞ sin Otþ CðjÞ, ðA:6Þ

_xðjÞðtÞ ¼ odC
ðjÞ
2 xi; _xi; tið Þ � djC

ðjÞ
1 xi; _xi; tið Þ

h i
cos od t� tið Þ

n
� odC

ðjÞ
1 xi; tið Þ þ djC

ðjÞ
2 xi; _xi; tið Þ

h i
sin od t� tið Þ

o
e�dj t�tið Þ � AðjÞO sin Otþ BðjÞO cos Ot, ðA:7Þ

oðjÞd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cj � d2

j ;
q

C
ðjÞ
1 xi; _xi; tið Þ ¼ xi � A jð Þ cos Oti � BðjÞ sin Oti � CðjÞ,

C
ðjÞ
2 xi; _xi; tið Þ ¼

1

oðjÞd

_xi � djAþ BO
� 	

cos Oti � djB
ðjÞ � AðjÞO

� 	
sin Oti þ dj xi � CðjÞ

� 	� �
. ðA:8Þ

For Case III (i.e., d2
j ¼ cj):

xðjÞðtÞ ¼ C
ðjÞ
1 xi; _xi; tið Þ þ C

ðjÞ
2 xi; _xi; tið Þ � t� tið Þ

h i
el
ðjÞ
1

t�tið Þ
þ AðjÞ cos Otþ BðjÞ sin Otþ CðjÞ, (A.9)

_xðjÞðtÞ ¼ lðjÞ1 C
ðjÞ
1 xi; _xi; tið Þ þ C

ðjÞ
2 xi; _xi; tið Þ

h i
el
ðjÞ
1

t�tið Þ
þ lðjÞ1 C

ðjÞ
2 xi; _xi; tið Þ � t� tið Þ el

ðjÞ
1

t�tið Þ

� AðjÞO sin Otþ BðjÞO cos Ot, ðA:10Þ
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lðjÞ1 ¼ �2dj ; C
ðjÞ
1 xi; _xi; tið Þ ¼ xi � AðjÞ cos Oti � BðjÞ sin Oti � CðjÞ,

C
ðjÞ
2 xi; _xi; tið Þ ¼ _xi þ AðjÞO� djB

ðjÞ
� 	

sin Oti � djA
ðjÞ þ BðjÞO

� 	
cos Oti � dj CðjÞ � xi

� 	
. ðA:11Þ

Appendix B. Local stability and bifurcation

The local stability and bifurcation for periodic motion yiþm ¼ Pyi can be determined by the eigenvalue
analysis based on the Jacobian matrix:

DP ¼
q tiþm; xiþmð Þ

q ti; xið Þ

� �
ti;yið Þ
¼
Ym
j¼1

DPsj
, (B.1)

where

DPsj
¼

qtiþj

qtiþj�1

qtiþj

qxiþj�1

qxiþj

qtiþj�1

qxiþj

qxiþj�1

2
6664

3
7775 (B.2)

and the matrix components qtiþj

�
qtiþj�1, qtiþj

�
qxiþj�1, qxiþj

�
qtiþj�1 and qxiþj

�
qxiþj�1 are determined

through Eqs. (38) and (48). If the eigenvalues for the mapping structure of periodic motion are l1,2. The stable
period-1 motion requires the eigenvalues be jlajo1; ða 2 f1; 2gÞ: Once the foregoing condition is not satisfied,
the period-1 motion is unstable. If |l1 or 2| ¼ 1 with complex numbers, the Neimark bifurcation occurs. If one
of the two eigenvalues is �1 (i.e., l(1 or 2) ¼ �1) and the other one is inside the unit circle, the period-doubling
bifurcation occurs, i.e.,

det DPð Þ þ Tr DPð Þ þ 1 ¼ 0, (B.3)

where det( � ) and Tr( � ) are the determinant and trace of the matrix, respectively. If one of the two eigen-
values is +1 (i.e., l(1 or 2) ¼+1) and the second one is inside the unit circle, the first saddle-node bifurcation
occurs, i.e.,

det DPð Þ þ 1 ¼ Tr DPð Þ. (B.4)
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